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Abstract
The behaviour of isolated fullerene anions C3−

60 can be strongly influenced by
coupling to intramolecular modes of vibration of the C60 molecule, which
can be described by a p3 ⊗ h Jahn–Teller (JT) effect. In solids such as the
A3C60 fullerides, the ions are also coupled to intermolecular vibrational modes
resulting in a cooperative JT effect. Dynamic distortions of individual ions can
be locked in place resulting in a static distortion of the solid as a whole. The
effect of the distortion on an individual ion can be modelled by introducing a net
strain into the basic p3 ⊗h JT effect. In this paper, we will determine analytical
expressions for the eigenstates and energies of this strained JT system, and
evaluate the results numerically as functions of the JT coupling strength, the
magnitude of the strain and the size of the splitting between different molecular
terms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that isolated C60 fullerene molecules have icosahedral (Ih) symmetry, and that
the electrons in the valence orbitals of these fullerene molecules are strongly coupled to hg-type
vibrations of the molecular cage. For C60 anions and cations, which have degenerate electronic
ground states, the coupling results in a local distortion of the molecule into a configuration with
a symmetry lower than Ih. However, there is a set of equivalent lower-symmetry configurations,
and the system will tunnel between these configurations on a very rapid timescale. EPR data [1]
suggest the tunnelling will take place in a time of the order of picoseconds, and estimates from
the strengths of the vibronic coupling [2–6] and the tunnelling splitting between the lowest
energy levels suggests a timescale of the order of femtoseconds. The tunnelling restores the
overall Ih symmetry of the molecule for measurements on a longer timescale than this, in what
is known as a dynamic Jahn–Teller (JT) effect.
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The effect of vibronic coupling can be rather different in fullerene-based solids to that in
isolated molecules. In this case, the distortion of a given molecule can be locked in place by
distortions of its neighbouring molecules in a cooperative JT effect [7–9], which can result
in a net overall distortion at low temperatures. This in turn can lead to different structural,
orientational and magnetic phases [10]. Such a situation is known to occur in fullerene-based
solids. For example, a structure that is likely to result in ferromagnetic order in TDAE-C60

has been presented by Kawamoto and co-workers [11, 12]. Further evidence for symmetry-
lowering in fullerene anions comes from the ESR work of Kato and co-workers, who suggest
a distortion to C2h or Ci symmetry [13, 14]. As the temperature increases, thermal effects tend
to destroy the correlations between the JT distortions at different lattice sites, and structural
phase transitions may take place.

As a cooperative JT effect results in a net distortion, the effect on a given ion can be
modelled by adding strain into models for JT effects in an isolated ion [15]. In this paper, we
will specifically consider the effect of strain in JT systems applicable to C3−

60 anions, where
the coupling is between electrons in p orbitals and hg-type vibrations in what is known as
the p3 ⊗ h JT effect [16, 17]. C3−

60 ions occur in, for example, the A3C60 fullerides, which
can be superconducting at relatively high temperatures [18] as well as exhibiting orientational
phase transitions from an unordered state to one with a mixture of two standard orientations
(known as merohedral disorder) [19]. Our results may be of use in helping to interpret the
vibronic spectrum of C3−

60 ions from spectroscopic experiments, and they can be used in further
calculations such as investigations of cooperative JT effects in the A3C60 solids.

Physically, the motion of any JT system can be understood by analysing the lowest
adiabatic potential energy surface (APES) formed from the vibrational and JT potential energy
terms combined with the effect of any splitting between different molecular terms. The precise
structure of the APES depends on the order to which the JT coupling is taken. For many
purposes it is sufficient to consider linear coupling only, even though for all of the pn ⊗ h
systems (applicable to Cn−

60 ions) this results in an accidentally higher symmetry of SO(3)
rather than Ih [16, 17, 20], as proved in general terms by Pooler [21].

For the unstrained p3 ⊗ h JT system, the lowest APES is a five-dimensional surface
containing a trough of equivalent minimum-energy points in three directions in linear coupling.
As there are no barriers to motion in these directions, any distortion will rotate about these
directions. This is known as a pseudo-rotation, to distinguish it from an actual rotation of the
molecule itself. When the JT coupling is sufficiently strong, there are barriers restricting motion
in the remaining two directions which result in local vibrations alongside the rotations in the
other three directions. When a uniaxial strain is included, we will show that the APES distorts
so that there is only a two-dimensional circle of equivalent minimum-energy points, leading
to pseudo-rotation in one direction instead of three. The APES is warped in the remaining two
directions to give wells whose depth increase as the strength of the strain increases.

The basic formalism we will use for writing down the Hamiltonian for the unstrained
p3 ⊗ h JT system and dividing the motion into vibrations and pseudo-rotations follows the
original work of Auerbach et al [20], which was then further developed by O’Brien [16, 17].
We will then include an additional strain term in the Hamiltonian. Also, whereas these previous
works used a numerical diagonalization to determine the energies of the rovibronic states, we
will use an analytical approach to write down expressions for the energies and states in terms
of integrals over the circle of minimum-energy points on the APES. We will show that it is
important to take into account the effects of anisotropy in the APES, as the barrier heights
and hence the vibrational frequencies will be much lower in the directions that correspond to
rotations in the absence of strain than in the directions that always correspond to vibrations.
To determine the energies of the states it is necessary to evaluate the integrals numerically.
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However, as the integrals are only one dimensional, they can easily be evaluated by standard
means. This is in contrast to the undistorted case, where the corresponding integrals are five
dimensional and numerical problems were found to occur in evaluating the multi-dimensional
integrals in some cases, as discussed in our previous work on both this system [22] and the
p2 ⊗ h system [23].

2. The Hamiltonian

An electronic configuration p3 results in electronic terms 4S, 2D and 2P [16, 17]. There is no
JT coupling to the S state, and so it need not be considered any further here. It is also found that
there is no JT coupling within either the 2D or the 2P states as all the required matrix elements
are zero, and thus the only coupling that needs to be considered is coupling between the 2P and
2D states involving hg vibrational modes [16, 17] (which is therefore known as a pseudo-JT
problem). This was discussed in terms of quasi-spin quantization by Ceulemans [24].

Building upon previous approaches for the unstrained system [16, 17, 22], we will write
the total Hamiltonian for the strained p3 ⊗ h JT system in the form

H = Hint + Hvib + Hterm + Hstrain (1)

where Hint represents the JT interaction, Hvib represents the vibrational terms, Hterm any
splitting between the 2P and 2D terms and Hstrain the effect of a strain along a given axis. C60

ions are coupled to eight hg modes of frequencies ranging from around 260 to 1500 cm−1 [25].
However, for many purposes it is sufficient to consider coupling to a single mode represented
by an effective frequency [26, 27], or coupling to the strongest mode only. We will therefore
consider linear coupling to a single hg mode. This will give a good indication of the effects
of vibronic coupling in C3−

60 ions, although it may be necessary to include both higher-order
couplings and the effects of multiple modes in order to explain the behaviour of these ions in
detail.

In order to write down a more explicit form for H, we need to define some notation
for the collective coordinates of the hg mode. In common with [22], we will use the labels
{Qθ , Qε, Q4, Q5, Q6}, which correspond to the labels {Q1, Q4, Q5, Q2, Q3} used in [16]
and [17]. Also, as mentioned above, the JT Hamiltonian is accidentally SO(3) invariant in
linear coupling [21]. As a result, we only need to consider a strain in one specific direction.
For convenience, we will choose to consider strains in the Qθ coordinate. The results can then
be used to model a strain in any direction. Mathematically, this is because a transformation
of coordinates [38], combined with a rotation of the electronic and vibrational operators [10],
can be used to convert the general Hamiltonian representing a strain in any direction into a
Hamiltonian for a strain in a specific direction. This equivalence is lost when higher-order
couplings are considered, and strains in different directions need to be considered explicitly.

In units in which the reduced mass of the mode, the mode frequency and h̄ are set to unity,
the components of H can therefore be written in the form

Hint = k
∑

ν

Qνσν

Hvib = 1
2

∑

ν

(
P2
ν + Q2

ν

)

Hstrain = −wσθ

(2)

where ν is summed over all of the components of the vibrational mode. The Pν = −i∂/∂Qν

are the momenta conjugate to the Qν , k is the JT coupling constant for this system and w
(which can be positive or negative) determines the strength of the strain. The σν are electronic
operators, which are expressed in the form of 8 × 8 matrices in [16] and [17], noting that our
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coupling constant k is equivalent to
√

3k in their papers as their k is the coupling constant for
the T ⊗ h JT system applicable to C−

60.
Hterm is taken to be a matrix with values δ on its first three diagonal elements and all other

values zero, such that a positive value for δ places the 2P term above the 2D term. Recent
calculations indicate that the 2P term is around 0.191 eV above the 2D term [28]. It is useful to
rewrite this in terms of the vibrational quantum h̄ω for the effective mode under consideration.
It is not clear what effective frequency should be used for C3−

60 ions. However, in the T2g

excited state of neutral C60, the lowest-frequency hg mode (at around 260 cm−1) appears to be
the one that is most strongly coupled [29], whilst the next-lowest mode at around 437 cm−1

is most strongly coupled for the ground state of C−
60 [3–5]. This suggests a value for δ of

approximately 5.9h̄ω. We will therefore use this value of δ when we plot our final graphs,
although the results themselves will be formulated to apply for any value of δ.

3. Separation into vibrational and rotational motion

The first step is to examine the potential energy terms to determine the structure of the APESs
around which the motion of the system will be based. When the JT effects experienced by an
unstrained C3−

60 ion were considered previously, it was possible to separate the vibrational and
pseudo-rotational motions by re-parametrizing the Qν in terms of a radial coordinate Q and
four angles, θ , φ, γ and α [16, 17]. θ , φ and γ correspond to the usual Euler angles and α
fixes the orientation of the coordinate system. To ensure that all points in the five-dimensional
space are covered only once, it is necessary to impose the restrictions such as 0 � α < π/3,
0 � γ < π , 0 � θ < π/2 and 0 � φ < 2π . A series of rotations in each of the four
angles then reduces the potential to a form involving the angle α and the term splitting δ
only [16, 17]. As the result is independent of the angles θ , φ and γ , they are free to take any
values (within their range of definition). This means that the APES is a multi-dimensional
trough of minimum-energy points a fixed distance Q from the origin. This specific value of
Q will be defined to be the radius ρ of the trough. It therefore follows that the motion of
the system at any one point on the lowest APES can be decomposed into vibrations in two
directions in Q-space and pseudo-rotations in the other three directions (i.e. around the trough
of minimum-energy points) [16, 17, 22]. Any one of six from the total of eight APESs can be
made to be a minimum by a suitable choice of α. In [16] and [17], the choice α = π/2 was
made, even though this lies outside the range of definition, because (after some algebra) it can
be seen that Hvib separates into a standard Hamiltonian for a two-dimensional vibration and a
Hamiltonian for a form of symmetric top about the z-axis [16, 17]. The latter can be solved to
gives the required three-dimensional pseudo-rotation.

An alternative method of separating the pseudo-rotational motion from that of the
vibrations is to use rotating coordinates

Q′
ν =

∑

λ

Dνλ(θ, φ, γ, α)Qλ (3)

where λ and ν take the values θ , ε, 4, 5 and 6, and the Dνλ are rotation matrix elements.
With the form of rotation matrix given in [23], at any given point on the trough the Q′

θ and
Q′
ε modes correspond to vibrations and the Q′

4, Q′
5 and Q′

6 modes to rotations. This form of
parametrization is useful as it properly identifies the local normal modes at any given point
on the trough, which naturally separate into pseudo-rotations and vibrations. Therefore it is
relatively easy to include anisotropic effects, for example, by assigning different frequencies
to each of the Q′

ν normal modes.
When strain is included, either of the above methods can still be used to separate the

vibrations and rotations. However, strain does not affect all of the six possible minimum
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Qθ

Qε

Q6

Figure 1. In the absence of any strain, the minimum-energy points on the lowest APES in the
five-dimensional Q-space can be mapped onto the surface of a sphere in three dimensions. When
a strain −wσθ is added in the Qθ direction, the minimum points form a circle in the Qε–Q6 plane,

centred on Qθ = −
√

3
2 ρ for w > 0 and Qθ =

√
3

2 ρ for w < 0.

APESs in the same way. In particular, the lowest APES with α = π/2 is unaffected by strain.
Hence in [22] the choiceα = π/6 was made. This choice will be followed here. In the absence
of strain, the vibrational Hamiltonian for this value of α can be separated into vibrational and
rotational parts as with α = π/2. However the Hamiltonian for the rotational part is now
that of a symmetric top about the x-axis instead of the z-axis. When strain is included, the
minimum-energy points no longer occur for all values of θ , φ and γ but only for θ = γ = π/2
when the coefficientw > 0, and θ = 0 whenw < 0. There is now a circle of minimum-energy
points of radius ρ/2 in the Qε–Q6 plane, as shown in figure 1. When w > 0, the circle is
centred on Qθ = −

√
3

2 ρ and the angle to the Qε -axis is 2φ. When w < 0, the circle is centred

on Qθ =
√

3
2 ρ and the angle to the Qε-axis is 2(φ + γ ). In both cases, two of the modes that

were rotations in the absence of strain have now been converted to vibrations. In terms of the
rotating coordinates Q′

ν , setting θ = π/2 and γ = π/2 (for w > 0), it can be seen that the
Q′

4 and Q′
6 modes are converted to vibrations, leaving a pseudo-rotation around a circle of

minimum-energy points in the Q′
5 direction only. When θ = 0 (for w < 0), Q′

4 and Q′
5 are

the vibrations and Q′
6 is the pseudo-rotation.

In terms of the radial coordinate Q, the energy of the minimum points on the lowest APES
(for both signs of |w|) is

V = 1
2

(
Q2 + δ −

√
(2k Q + |w′|)2 + δ2

)
(4)

where w′ = √
3w. When w = 0, this result is equivalent to the result obtained [22] for the

unstrained p3 ⊗ h system. The value of Q ≡ ρ on the minimum-energy surface can be found
by minimizing V with respect to Q. It can be seen that when the term splitting δ is zero, the
radius is ρ = k. In general the radius is a root of the quartic equation

(Q2 − k2)(2k Q + |w′|)2 + Q2δ2 = 0 (5)

which can easily be found numerically for any given values of k,w and δ. In fact, the numerical
solutions when the JT coupling dominates over both the term splitting and the strain, i.e. for
k2 > δ and k2 > |w| are always very close to k. For example, the numerical solution for k = 5,
δ = 5 and w = 5 (which represents quite a large strain and term splitting) is ρ = 4.98182,
which differs from k = 5 by only 0.36%. One other point of note, which we will revisit later,
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is that when the term splitting is large compared to the JT coupling and strain, the radius of the
trough is zero meaning the potential energy surface is simply a point at the origin. A similar
result was noted previously in [30].

4. The wavefunction

From this point, we will mostly give results for the case when w > 0, although it is a simple
matter to adapt our results for the w < 0 case, mostly just by changing some signs in relevant
definitions. The complete wavefunction for a general state of the system with p, q , r and s
excitations of θ ′, ε ′, 4′ and 6′ symmetries respectively (forw > 0), and with rotational quantum
number m, will be written in the form |ψtot; p, q, r, s,m〉. We will now seek an algebraic form
for this wavefunction that takes into account the coupled electronic, vibrational and rotational
motion of the system.

4.1. Glauber state

If the electronic, rotational and vibrational wavefunctions at any point on the lowest APES
are written as ψg, ψrot(m) and ψvib(p, q, r, s) respectively, we can intuitively see that the total
wavefunction must be able to be written as an integral

|ψtot; p, q, r, s,m〉 =
∫ 2π

0
ψgψrot(m)ψvib(p, q, r, s) dφ (6)

over the circle of minimum-energy points on the lowest APES defined by the angle φ. The fact
that ψg, ψrot(m) and ψvib(p, q, r, s) are inside the integral reflects the fact that the three types
of motion cannot be separated. It is also possible to derive this result formally using projection
operator methods, which allow a state with the correct overall symmetry to be projected out
from knowledge of one point on the minimum-energy surface only. The projection operator
method follows general ideas first presented by Judd [32], and then further developed for the
T ⊗ d [33, 34] and E ⊗ e [35] JT systems, where states of the form of equation (6) were
referred to as Glauber states. These are coherent states of a harmonic oscillator. Glauber states
are more commonly used to describe a wave pulse which oscillates back and forth across a
potential well retaining its shape over time (and which can be used to model a continuous wave
laser field or an electromagnetic field of unmodulated radio wave, for example). They have
however been used in a JT context to analyse various specific JT systems [36, 37]. Although
Glauber states have a well-defined physical meaning, they are not eigenstates of the harmonic
oscillator problem. (In fact, they are eigenstates of phonon annihilation operators.) In the
current context, the Glauber states describe the pseudo-rotation of the distortion around the
minimum-energy trough (as well as vibrations ‘across’ the trough). We will refer back to
this point when discussing the forms of ψvib and ψrot . Full details of the projection operator
approach were given for the T ⊗h JT system (applicable to C−

60) in [31] so will not be repeated
here.

We now require more specific forms forψg, ψvib andψrot in order to evaluate the allowed
energies of the system. From diagonalization of the interaction HamiltonianHint, the electronic
wavefunction on the lowest APES with the angles and electronic basis defined as above can
be seen to be

ψg = 1
2

{
−√

2 − δ′ sin φ,
√

2 − δ′ cosφ, 0, 0,
√

2 + δ′ cosφ, 0, 0,
√

2 + δ′ sin φ
}

(7)
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where

δ′ = 2ρδ

k(w′ + 2kρ)
. (8)

For the JT state to exist, it is necessary to have δ′ < 2 (δ′ > 2 is predominantly not a JT
problem, so is not considered further here). This leads to the condition referred to in section 3
that the trough of minimum-energy points does not exist if the term splitting is large compared
to the JT coupling. For given values of δ and w, this means there is a minimum value of
k ≡ kmin for which results can be obtained. This minimum value can be found by solving the
equation δ′ = 2 numerically. Alternatively, if we make the assumption that ρ ≈ k, the value
is kmin = √

(δ − w′)/2 for δ > w′ and kmin = 0 for δ < w′. In addition to the condition on δ′,
is also necessary to choose values for k, w and δ such that the frequencies λν′ all remain real.
For typical values, this will not introduce any extra conditions.

The Hamiltonian for the rotational part of the kinetic energy (i.e. the part of Hvib involving
the momentum of the rotational mode) can be found from the symmetric top Hamiltonian
appropriate for the unstrained case [16, 17] after substitution of α = π/6 and θ = γ = π/2,
giving a contribution proportional to ∂2/∂φ2. Eigenfunctions of this operator are simply

ψrot(m) = eimφ. (9)

Clearly m must be an integer for the wavefunction to be invariant under the transformation
φ → φ + 2π . It is later found that for the overall state to exist, m must be an odd integer.
Alternatively, the same results can be found by restricting the angles in the symmetric top
wavefunctions obtained in [22] for the unstrained p3 ⊗ h problem. The results are exactly as
we would expect physically for rotation around a circle, where eigenfunctions are eigenstates
of an angular momentum operator l̂z = ih̄∂/∂φ, and is also the same as for the more familiar
E ⊗e JT problem where rotation is also around a circle at the bottom of the so-called ‘Mexican
hat’ potential.

Although the ψrot(m) are angular momentum eigenfunctions, they are not the most
appropriate functions for describing the motion of a JT system because they do not represent
localized functions. A physical distortion of a (fullerene) molecule must be localized, and is
therefore more appropriately described by a localized function. Just as a plane-wave eikx must
be multiplied by a Gaussian-type function in x to localize it into a coherent pulse, it is necessary
to multiply eimφ by an appropriate Gaussian in the rotational coordinate to represent the situation
in which there is a localized distortion at any given instant. The direction of the distortion will
then rotate in time, without changing the overall shape of the distortion. Pictures illustrating
the pseudo-rotation of a distortion are given in [17]. However, as the ground state of a simple
harmonic oscillator is a Gaussian function, the extra factor required to localize the rotation
can be introduced by counting it in the vibrational wavefunction. Thus it will appear that
our wavefunction contains a contribution from the ground state of a harmonic oscillator in the
Q′

5 coordinate, although the presence of this term is to give a correct rotational wavefunction.
Note that this does not mean that we should consider states with phonon excitations in Q′

5,
because the term is not representing a vibration. It should also be noted that a term equivalent
to that in Q′

5 is implicitly present in previous work on other systems that used Glauber-type
states [35, 22, 23], where results of analytical calculations agree well with those of numerical
methods. However, its presence was hidden through use of second-quantized notation.

4.2. Anisotropic effects

As stated in section 3, the four vibrations will have different frequencies, with the frequencies
in the directions that are pseudo-rotations in the absence of strain being much lower than
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those in the Q′
θ and Q′

ε directions that are always vibrations. In fact, we will show that the
frequency of the Q′

ε modes is identically equal to ω and that of the Q′
θ mode is very close

to ω (such that neglecting the difference from ω does not make very much difference to the
overall results). However, Q′

4 and either Q′
6 for w > 0 or Q′

5 for w < 0 are rotations in zero
strain and vibrations in finite strain. Therefore for weaker strains the potential barriers in these
two directions will be much lower than those in the Q′

θ and Q′
ε directions. This anisotropy is

important for all values of strain. We will now consider this anisotropy in more detail.
In previous work, anisotropy has been incorporated into JT problems in two ways. In strong

‘coupling’, which means both strong JT coupling and strong strain in the current context,
it is possible to expand the potential about a minimum point on the trough of minimum-
energy points to second order and diagonalize the resultant matrix M . The eigenvalues are
the squares of the anisotropic frequencies for each of the Q′

ν modes [39]. The degeneracies
of the frequencies agree with those predicted by group theory for the appropriate symmetry
of the minimum (which is lower than Ih). Analysis of the corresponding eigenvectors allows
symmetry labels to be assigned to the resulting frequencies. In fact, the curvature matrix

S =





−
√

3
2

1
2 cos 2φ 0 0 1

2 sin 2φ

− 1
2 −

√
3

2 cos 2φ 0 0 −
√

3
2 sin 2φ

0 0 sin φ cosφ 0
0 − sin 2φ 0 0 cos 2φ
0 0 cosφ − sin φ 0




, (10)

(for w > 0) whose rows are the components of the Qν necessary to define the Q′
ν on the

minimum-energy surface, will automatically diagonalize M via the operation S · M · S† and
results in the anisotropic frequencies labelled in terms of the Q′

ν modes automatically [40]. It
is found convenient to write the frequencies in the form ων′ = λν′ω. For the strained p3 ⊗ h
problem, this method of calculation gives

λθ ′ =
√

1 − 2δ2ρ3

k(w′ + 2kρ)3

λε′ = 1

λ4′ =
√

1 − 2kρ

(w′ + 2kρ)

λ5′ = 0

λ6′ =
√

1 − kρ

(w′ + kρ)
.

(11)

λε′ = 1 shows that the frequency of the vibration in the Q′
ε direction is unaltered by the strain.

The λ5′ = 0 corresponds to the pseudo-rotation in the Q′
5 direction, but does not give the

Gaussian term that is required to localize the rotational distortion. λ4′ and λ6′ both tend to 1
when the strain is much larger than the vibronic coupling, and decrease towards zero when the
strain is small compared to the vibronic coupling. This is the required behaviour to describe
the conversion of a vibration to a pseudo-rotation as the magnitude of the strain is decreased. It
can be seen that these two frequencies are very similar to each other. The remaining frequency,
λθ ′ , tends to one in large strains, and is identically equal to one when the term splitting δ is
zero.

An alternative approach to anisotropy, which extends the strong-coupling results to weaker
strains, is to first apply a shift transformation

Ud = exp

(
αθ√

2
(b′†
θ − b′

θ )

)
, (12)
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where αθ is a variational parameter, and b′†
θ and b′

θ are phonon creation and annihilation
operators respectively for the θ ′ mode. The shift transformation has the effect of shifting the
origin of coordinate Q′

θ to Q′
θ − αθ (and leaving the origin of each of the other vibrational

modes unaltered). Thus if the value of αθ is set to the radius of the trough ρ, the origin is
shifted to a minimum-energy point on the APES. (This can be confirmed using the Öpik–Pryce
method.) The overall effect on the Hamiltonian is that it can be divided into a part that does
not contain phonon operators and a part that does. The latter represents higher-order terms
and so can be neglected for the current purposes. Note that the wavefunction at this stage can
be compared directly with the usual form given for Glauber coherent states [35] as, due to the
commutation properties of the b†

ν and bν ,

Udψvib(p, q, r, s) ≡ eκ(b
′†
θ −bθ ) |0〉 = e− 1

2 κ
2
eκb′†

θ (b′†
θ − κ)p(b′†

ε )
q(b′†

4 )
r (b′†

6 )
s |0〉 (13)

where κ = ρ/
√

2.
Secondly, a scale transformation

Us = exp

(
∑

µν

�µν(bµbν − b†
µb†

ν)

)
(14)

is applied to rescale the coordinates Qν . The sum is over µ and ν = θ and ε with b†
ε and bε

defined in a similar manner b†
θ and bθ . The�µν are parameters which form a matrix� whose

values can be fixed by minimizing the energy of the ground state at a minimum-energy point
calculated to second order in perturbation theory [39–42]. The effect of Us is to scale the Qν

according to the relation

U †
s QνUs =

∑

µ

e−2�
µν Qµ (15)

where the e−2�
µν are elements of a matrix e−2� defined in terms of the matrix � as a power

series expansion. The effect on a harmonic oscillator-like function for vibrational modes Qν

of frequency ω (in units in which the reduced mass and h̄ are set to 1) is thus [42]

exp

(
− 1

2

∑

µ

ωQ2
µ

)
→ exp

(
− 1

2

∑

µ

ωµ′ Q′2
µ

)
(16)

where the Q′
µ are the local mode coordinates in equation (3) and the ωµ′ are the corresponding

frequencies. This result is of the required form for an anisotropic oscillator.
Mathematically, it is found that the required form for the matrix � is given by

� = 1
4 S† · [ln(λν′)] · S (17)

where [ln(λν′ )] is a diagonal matrix with diagonal elements ln(λν′ ). It is then found that

λθ ′ =
√

1 − 2δ2ρ3

[k(w′ + 2kρ) + ρ](w′ + 2kρ)2

λε′ = 1

λ4′ =
√

1 − 2kρ[k(w′ + 2kρ)− δρ]

(w′ + 2kρ)[k(w′ + 2kρ) + ρ(2 − δ)]
λ5′ = 1

λ6′ =
√

1 − kρ[ρ(w′ + 3kρ) + 2k]

ρ(w′ + 3kρ)(w′ + kρ) + 4(ρ + kw′ + 2k2ρ)
.

(18)

These results reduce to the expressions given in equation (11) in strong coupling and strong
strain (i.e. k � 1, ρ � 1 and w � 1 in units of h̄ω), except for the rotational mode Q′

5.
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The simpler strong-‘coupling’ (i.e. strain) method gave λ5′ = 0, which does not allow for the
localization of the rotational state. This method automatically gives a value that is appropriate
for producing a coherent state.

4.3. Vibrational wavefunction and normalization of total wavefunction

In terms of the scale transformation parameters, the (unnormalized) ground-state ‘vibrational’
wavefunction at a point on the trough including anisotropy and the term to localize the
vibrational function can be written (in units h̄ = 1) in the general matrix form [42]

ψvib(0, 0, 0, 0) = e− 1
2 [ 	Q+	α]† ·e4�·[ 	Q+	α] (19)

where 	Q = (Qθ , Qε , Q4, Q5, Q6). 	α is a vector with components αγ characterizing the
positions of the bottom of the trough. The form for 	α in this case is

	α =
(√

3

2
ρ,−ρ

2
cos 2φ, 0, 0,−ρ

2
sin 2φ

)
. (20)

From the definition of the matrix� in equation (17), it follows that e4� is given by the matrix

e4� = S† · [λν′ ] · S, (21)

where [λν′ ] is a diagonal matrix with elements λν′ . For the case here (with w > 0), this gives

ψvib(0, 0, 0, 0) = e− 1
2 [λθ ′ (Q′

θ−ρ)2+Q′2
ε +λ4′ Q′2

4 +Q′2
5 +λ6′ Q′2

6 ]. (22)

It can thus be seen that the scale transformation has had the required effect. This is exactly
of the form expected for a vibration in the Q′

θ direction centred on Q′
θ = ρ of frequency

λθ ′ω and vibrations centred on the origin in the Q′
ε , Q′

4 and Q′
6 directions with frequencies ω,

λ4′ω and λ6′ω respectively, combined with the Gaussian term in Q′
5 to localize the rotational

wavefunction and produce a coherent state.
We now have an explicit analytical expression for the complete states |ψtot; 0, 0, 0, 0,m〉

with no vibrational excitations, but they must be normalized. This can be accomplished by
converting the Q′

ν to Qν using equation (3) and integrating the overlap of the wavefunction at
a point φ with the wavefunction at φ′ over all of the Qν (which can be done analytically using
standard integral results), then integrating over φ + φ′. Finally this leaves the single integral
over y = φ − φ′,

Om
tot ≡ 〈ψtot; 0, 0, 0, 0,m|ψtot; 0, 0, 0, 0,m〉 = F(1,m), (23)

where

F( f,m) = 32
√

2π7/2e−λθ ρ2

∫ 2π

0

f e
ρ2λ2

θ ′
Y (7+cos 2y) cos y cos my√

XY Z
dy (24)

with

X = 7 + λθ ′ − (−1 + λθ ′) cos 2y

Y = 1 + 7λθ ′ + (−1 + λθ ′) cos 2y
Z = λ2

4′ + 6λ4′λ6′ + λ2
6′ − (λ4′ − λ6′)2 cos 2y.

(25)

It is not surprising that the final result is a single integral as all points on the trough are
equivalent, and so the overlap between two points on the trough can depend only on the
angular difference in the positions of the two points. It is a simple matter to evaluate the
integral in Om

tot numerically for any values of k, w and δ, noting that m must be an odd integer
as stated below equation (9). The symmetry of the function to be integrate is such that if m
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is taken to be even, the overlap integrals are all zero. It should also be noted that, as we will
discuss further in section 5.2, the integrals become those defining Bessel functions in the limit
of no anisotropy (λθ ′ = λ4′ = λ6′ = 1 and thus X = Y = Z = 8).

Although the above results are forw > 0, results for w < 0 can be obtained by replacing
φ by z = φ + γ and changing some signs in subsequent formula. For example, the electronic
ground state equivalent to equation (7) is

ψg = 1
2

{√
2 − δ′ cos z,

√
2 − δ′ sin z, 0, 0,−√

2 + δ′ sin z, 0, 0,
√

2 + δ′ cos z
}
. (26)

5. Energy calculation

5.1. Results including anisotropy

In previous papers that included anisotropy via the scale transformation, it was found that the
energy of the states with no vibrational excitations should be calculated using a wavefunction
equivalent to equation (19) corrected to second order in perturbation theory via coupling to
phonon excited states on the upper APES sheets [42]. Second-ordercorrections to the states are
necessary because the anisotropic corrections to the energy are second order. If the states are
only taken to first order, the energies of the minimum points can be raised rather than lowered
by anisotropy, which is incorrect as the scale transformation is a variational method. However,
the formulae incorporating the scale transformation to second order are rather complicated, and
no attempt has been made to incorporate such corrections to states with phonon excitations. An
additional problem occurs in the current problem where there is a trough on the lowest APES.
We will take an alternative approach here. Results including the second-order corrections on
previous systems, such as the cubic E⊗e system, are equivalent to those taking the zeroth-order
wavefunction only but including the anisotropic frequenciesλν′ in the vibrational Hamiltonian.
This is not surprising as the desired effect of including anisotropy is to make the system appear
as if it is composed of harmonic oscillators of (dimensionless) frequency λν′ . Therefore, for
our current problem we will use the vibrational Hamiltonian

Hvib = 1
2

∑

ν

(
P2
ν + λ2

ν′ Q′2
ν

)
(27)

(noting that the second term must be written in terms of the rotating (primed) coordinates but
the first term need not be as

∑
ν P ′2

ν = ∑
ν P2

ν ). The matrix elements of H are now determined
in a similar manner to the overlap. The energies are calculated in terms of the energy Eg of
the ground state in strong coupling given by

Eg = −EJT + 1
2 (λθ ′ + λε′ + λ4′ + λ6′) . (28)

EJT refers to the terms

EJT = λ2
θ ′ρ2

2
+
w

2

ρ

k
− δ

4
(2 − δ′). (29)

The first term in EJT is equivalent to the usual JT energy due to the vibronic coupling, and
the remaining two terms are from the strain and term splitting respectively. The remaining
terms in Eg give the zero-point energy for the four vibrational modes. Note that although it
was necessary to include a term in λ5′ to localize the rotation, it is not necessary to include a
zero-point energy contribution of 1

2λ5′ for this mode, which is to be expected as it is a rotation
not a vibration.
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Figure 2. Energies of states with up to three rotational excitations and two vibrational excitations
(including anisotropic effects), as a function of the JT coupling k and in units of h̄ω. The results are
calculated withw = 0 and δ = 0 and plotted relative to Eg. In subplot (a), the three states with low-
est energy in strong coupling (green lines) are those of the states with no phonon excitations, the next
six states (blue lines) are states with one-phonon excitation of type θ ′ or ε′ and the remaining states
are those that have two-phonon excitations of type θ ′ and/or ε′ . Subplot (b) includes similar states as
for (a) but with 4′ and/or 6′ excitations, and (c) is for one θ ′ or ε′ excitation and one 4′ or 6′ excitation.

A relatively simple calculation shows that the energy of the states with no vibrational
excitations in finite coupling can be written in the form

Em
0 = Eg +

Mm
int + Mm

vib

Om
tot

(30)

where Mint and Mvib are matrix elements from the interaction and vibrational terms respectively
given by

Mm
int = F

(
−8ρ2λθ ′

Y
,m

)

Mm
vib = F

(
ρ2λ3

θ ′

Y
(7 + cos 2y) ,m

)
.

(31)

Having obtained a result for the anisotropic ground states, we can now move on to consider
excited vibrational states with p, q , r and s excitations of the Q′

θ , Q′
ε , Q′

4 and Q′
6 oscillators

respectively. In principle, these could have been considered with the scale transformation
approach by including appropriate creation operators, but as stated previously the mathematics
soon becomes prohibitively complicated. It is a much simpler matter to extend the calculations
to the excited states in the coordinate representation, simply by including appropriate Hermite
polynomials in the states in ψvib. The integrals over the Qν can still be performed analytically
and the overall results reduced to a single integral over y. One unusual feature is that, since
Q′

4 and Q′
5 contain factors cosφ and sin φ, m must be even when r + s is odd, and odd when

r + s is even in order for the overall parity of the wavefunction to be conserved.
We will first calculate the energies of states for the case whenw = 0 and δ = 0. Although

the results are not strictly valid whenw = 0 as the lowest potential surface consists of a three-
dimensional trough and not a one-dimensional one as modelled here, it is still useful to plot this
case for illustration purposes. In previous papers, it has been found to be convenient to plot the
results obtained relative to the constant energy EJT. However, in this problem, it will be more
informative to plot the results relative to Eg. This is because when strain is included and the
term splitting δ = 0, the only dependence of some of the results on the strain w is through the
zero-point energy. Results with up to two-phonon excitations and three rotational excitations
are shown in figure 2 as follows. The three curves on subplot (a) with lowest energy in strong
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Figure 3. As subplots (b) and (c) of figure 2 but neglecting anisotropic effects.

coupling give the energy of the lowest three rotational states with no phonon excitations. When
plotted relative to Eg, these states tend to the expected energy limit of zero in strong coupling.
The remaining curves in subplot (a) show states with θ ′ and/or ε ′ excitations. The energies
clearly separate into bands in strong coupling according to the number of phonon excitations
present. This is because the frequency λε′ is always identically equal to 1 and the frequencyλθ ′

equals 1 in this limit of zero term splitting. Some of the excited states do not tend to the correct
limits in weak coupling. This is because the model used does not work well in weak coupling,
where the potential energy surface does not contain clearly defined wells. Non-orthogonality
between states with the same rotational quantum number m also becomes important in this
limit. An orthogonalization procedure can be used to improve the results, but this only has a
significant effect in weak coupling and it makes the method considerably more complicated.
Alternative numerical methods are more appropriate in this limit.

Subplot (b) of figure 2 shows states with 4′ and/or 6′ excitations, and (c) shows states
with one θ ′ or ε ′ excitation and one 4′ or 6′ excitation. A separation into bands is not seen,
with the energies of all the states merging in strong coupling. This is because the anisotropic
frequencies λ4′ and λ6′ are very small (as the vibronic coupling dominates the strain) and so
the separations between excited phonon states are also small.

Figure 3 shows results equivalent to subplots (b) and (c) of figure 2 but with the anisotropic
frequencies λν′ all set to 1. The curves equivalent to subplot (a) are not given because they
are identical to those in figure 3 when plotted relative to Eg. However it should be noted
that energy of the states relative to the bottom of the trough (given by Eg) is rather higher
than that obtained when anisotropy is not included. Subplot (b) shows a clear separation into
energy bands in strong coupling according to the phonon occupation number. Both subplots
show much less difference between the energy values in strong and weak coupling than with
anisotropy, which is because the zero-point energies are much larger. The issue of incorrect
limits in weak coupling still applies to these results. It should also be noted that there are
accidental degeneracies between states with Q′

4 and Q′
6 excitations. This is because the

frequencies of the modes are equal in the isotropic limit.
We will now look at the cases where there is a non-zero term splitting δ and/or strain term

w. When a non-zero strain term (w > 0) is included but the term splitting remains zero, the
levels with θ ′ and/or ε ′ excitations are identical to those in subplot (a) of figure 2 with w = 0.
Again, the only absolute difference is in the energy Eg. The remaining results are very similar
to those in subplots (b) and (c) of figure 2, having the same limits in strong and weak coupling.
However, the energies reduce more slowly as the coupling strength increases, so that they do
not reach their strong-coupling limits until larger values of k.
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Figure 4. As figure 2 but with δ = 5.9 in units of h̄ω.
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Figure 5. As figure 2 but with w′ = 10 and δ = 5.9 in units of h̄ω.

When the term splitting δ is non-zero, we can only obtain results for k > kmin, as discussed
in section 4. When w = 0, the results in strong coupling (relative to Eg) are very similar to
those with no term splitting. This is shown in figure 4 for δ = 5.9. In weaker coupling, as
k reduces towards kmin, the curves bend noticeably downwards. This is probably attributable
to the fact that the states are becoming invalid in this limit. The issue does not arise when a
relatively large strain is included as well as a non-zero term splitting, as kmin is again zero.
Figure 5 shows results for δ = 5.9 and w′ = 10 (in units of h̄ω). Whilst the energy of the
lowest curve on subplot (a) is now less than Eg, the general shape of all the curves is very
similar to that in figure 2 where w = δ = 0. Whilst the energies of the states themselves are
altered by finite values of strain w and term splitting δ, we can conclude that almost all of the
effect is in the ‘constant’ energy term Eg that is common to all of the states, unless the term
splitting is large compared to both the JT coupling k and the strain.

5.2. Alternative calculation neglecting anisotropy

If anisotropy is neglected, the calculations become much simpler as all of the required integrals
(for all ground and excited states) can be written in terms of integrals defining Bessel functions.
This can be seen by settingλθ ′ = λ4′ = λ6′ = 1 in the last section. Alternatively, the calculation
can be carried out entirely in second-quantized form [43]. This makes the calculation for excited
states in particular much simpler.
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As a result of either of the above approaches, the overlap in equation (23) can be written
in terms of sums of one-dimensional integrals of the form

∫ 2π

0
cos(2ny)e− ρ2

8 (1−cos 2y) dy ≡ 2πe−ρ2/8 In(ρ
2/8) (32)

where n is an integer and In(ρ
2/8) are modified Bessel functions of the first kind. Due to

recursion relations between Bessel functions, the results can be written in a number of ways.
The simplest form for the overlaps for the states with no phonon excitations and m up to 7
(with In ≡ In(ρ

2/8)) are

O1
tot = πe−ρ2/8 (I0 + I1)

O3
tot = πe−ρ2/8 (I1 + I2)

O5
tot = πe−ρ2/8 (I2 + I3)

O7
tot = πe−ρ2/8 (I3 + I4) .

(33)

The energy levels can now be calculated by evaluating the matrix elements of H in a
similar manner to the overlap factors [43]. It can be shown that the energies Em

0 of the states
with no phonon excitations can be obtained from equation (30) by setting the λν′ = 1, Mm

int = 0
and

M1
vib = 1

2πe−ρ2/8 (I0 − I1)

M3
vib = 3

2πe−ρ2/8 (I1 − I2)

M5
vib = 5

2πe−ρ2/8 (I2 − I3)

M7
vib = 7

2πe−ρ2/8 (I3 − I4) .

(34)

When the resulting energies are plotted, they are found to be identical to those for the no-
phonon states obtained above (see subplot (a) of figure 2), which is to be expected as it is only
the method of evaluation of the results that has changed. It should be noted that analytical
results for states including phonon excitations can be obtained in a similar manner to that here,
although they are more complicated (involving not only the Bessel functions but coefficients
that depend upon ρ).

When anisotropic effects are neglected, the vibrations in the four vibrational directions
all take place with the same frequency, so we could work with any linear combination of the
Qν in these directions. This means that the separation into the Q′

ν used in equation (3) is
more complicated than it need be. The much simpler set of coordinates {Qθ , Q4, Q5, Qv, Qr}
where Qr is a rotational coordinate and Qv is a vibrational coordinate, could be used in the
absence of anisotropy. Qv is equivalent to Q′

6 for w > 0 and Q′
5 for w < 0, and

Qv = Qε cos 2z + Q6 sin 2z (35)

where z = φ for w < 0 and z = φ + γ for w > 0. However, the meaning of vibrational
excitations is different with these new definitions and so the energies calculated are different
from those obtained in section 5.2 for the limit of no anisotropy. Hence only the states with
no vibrational excitations are directly comparable.

6. Expectation values

As mentioned in the introduction, dynamic distortions of an isolated molecule can become
locked into static distortions in a solid due to cooperative vibronic interactions between
molecules [7–9, 11, 12]. This can result in various different phases (structural, orientational,
magnetic etc) depending on the exact nature of the JT couplings in any given solid, as discussed
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in [10]. Determination of these coupling constants is beyond the scope of this paper. However,
a signature of any cooperative phase will be that the expectation value 〈Qν〉 of one or more of
the Qν will be non-zero. However, the 〈Qν〉 are proportional to the expectation values 〈σν〉
of the electronic operators σν [15]. As the effect of the cooperative vibronic coupling can be
modelled by a strain on an isolated molecule, we will now calculate these expectation values.

The expectation value of any operator L at temperature T can be defined as

〈L〉 =
∑

i〈ψi |L|ψi〉 exp(−Ei/kBT )∑
i exp(−Ei/kBT )

. (36)

The |ψi 〉 are taken to be the complete set of (normalized) ground and excited vibronic states
of the system, namely |ψtot; p, q, r, s,m〉 in our case, the Ei are the corresponding energies
and kB is the Boltzmann constant.

In general, equation (36) can only be evaluated when the complete set of vibronic states
is known. However, for the case of a strong θ -type strain, it is straightforward to show that
〈ψel|σλ|ψel〉 = 0 for λ = ε, 4, 5 and 6. The corresponding values of 〈σλ〉 are therefore zero.
However, for λ = θ ,

〈ψg|σθ |ψg〉 =
√

3ρ

2k
〈ψg|ψg〉. (37)

Therefore, after substituting this result into the matrix element for the total state
|ψtot; p, q, r, s,m〉, integrating over all points on the trough and dividing by the overlap to
normalize the state, the summations in the numerator and denominator of equation (36) cancel.
This leaves the result

〈σθ 〉 =
√

3ρ

2k
. (38)

This tends to a constant value of
√

3/2 in strong strain (when ρ = k) and is still very close
to

√
3/2 even in weaker strains due to the very weak dependence of ρ on w. The value is

unaffected by anisotropy, because anisotropy only affects the vibrational component of the
vibronic state, which drops out of this calculation.

〈Qθ 〉 can also be calculated directly from the vibronic states. The result should be
proportional to that in equation (38) [15]. However, the calculated result is not exactly
identical due to the fact that the analytical expressions used for the vibronic states are not exact.
The matrix elements 〈ψtot; p, q, r, s,m|Qθ |ψtot; p, q, r, s,m〉 are not simply proportional to
〈ψtot; p, q, r, s,m|ψtot; p, q, r, s,m〉, so the summations in the numerator and denominator of
the expression for 〈Qθ 〉 do not cancel out. However, the contribution from the (normalized)
ground state is exactly −

√
3

2 ρ, and those for the excited states are very close to this value.
From this we can conclude that 〈Qθ 〉 ≈ −k〈σθ 〉, showing that, to a good approximation, 〈Qθ 〉
and 〈σθ 〉 are indeed proportional.

7. Conclusions

In this paper, we have used an analytical method to formulate states for the p3 ⊗ h JT system
subject to a strong strain. These states take into account the allowed vibrational and pseudo-
rotational motion of the system around minimum points on the lowest APES, as well as the
JT coupling between this motion and the motion of the electrons. The states can be used to
determine the energies of this system by simple evaluation of one-dimensional integrals.

The results in this paper complement those obtained previously for an unstrained p3 ⊗ h
JT system [22]. It would be very interesting to consider the case of intermediate strains, which
will link these two limiting cases, and in particular to evaluate 〈σθ 〉 over the complete range
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of strains. However, it is not known in general how to formulate analytical wavefunctions
for a hindered rotation, or how to track from a vibration in one limit to a rotation in another
analytically. This can only be done in specific cases, such as the quadratic E ⊗e problem where
the rotational wavefunction can be replaced by Mathieu functions [9]. In other cases, it would
be possible to either modify states for zero strain to apply with strain or modify the strong-strain
states for weaker strains, but both of these approaches are difficult and the results would only
be approximate. Another approach would be to solve the differential equation representing
the motion in the coordinate(s) representing the hindered rotation(s) numerically and combine
the results with the analytical results for the vibrational directions, in a similar manner to that
used previously for the much simpler E ⊗ e problem. Alternatively, a numerical approach
such as a Lanczos diagonalization could be used to obtain results for the problem as a whole in
the intermediate strain region, although it would be very difficult to obtain a sufficiently large
set of ground and excited states for the summations in equation (36) to converge. All such
approaches are beyond the scope of this paper, as it is important to know results in the limit of
strong strain before attempting to interpolate between weak and strong strain.

Although we do not have quantitative results for the intermediate strain region at this
stage, it is nevertheless possible to make some qualitative predictions about 〈σθ 〉. We know
from equation (38) that 〈σθ 〉 is approximately constant for strong strains. We also know that it
must be zero when there is no strain, as this situation corresponds to a dynamic JT effect where
distortions in equivalent symmetry directions are all equally likely. In the E ⊗ e system, the
magnitude of 〈σθ 〉 was found to reduce smoothly from its strong-strain value until attaining
the value of zero in no strain [15]. Also, the strong-coupling value is attained for much weaker
strains at low temperatures than high ones. This seems reasonable as cooperative distortions
are more likely to remain locked in place at low temperatures than high ones. Very similar
qualitative behaviour is to be expected for the p3 ⊗ h system.

It is hoped that the results in this paper will be useful in understanding the observed
behaviour of fullerene solids such as the A3C60 fullerides, in which C3−

60 ions can exhibit a
p3 ⊗ h JT effect with an overall effective strain due to coupling to intermolecular vibrational
modes. In particular, the results may help the understanding of various structural and
superconducting phase transitions in these solids.
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